Featured Post
Iconography of power Case Study Example | Topics and Well Written Essays - 500 words
Iconography of intensity - Case Study Example Old craftsmanship utilizes chain of importance of scale to support pictures of intensity. I...
Monday, January 27, 2020
Radiation Protection for Angiography Procedure.
Radiation Protection for Angiography Procedure. Fluoroscopic procedure produces the greatest patient radiation exposure rate in diagnostic radiology. Therefore the radiation protection in fluoroscopy is very important. Several feature and techniques in fluoroscopy are designed for protection to the patient during fluoroscopic procedure. a) Protection to Patient * A dead-man switch is a device (switch) constructed so that a circuit closing contact can only be maintained by continuous pressure on the switch by the operator. Therefore, when the machine is turned on by any means, whether by the push button at the control panel, or by the foot pedal, this switch must be held in for the machine to remain on. * The on-time of the fluoroscopic tube must be controlled by a timing device, and must end alarm when the exposure exceeds 5 minutes. An audible signal must alert the user to the completion of the preset on time. This signal will remain on until the timing device is reset. * The X-ray tube used for fluoroscopic must not produce X-rays unless a barrier is in position to intercept the entire cross-section of the useful beam. The fluoroscopic imaging assembly must be provided with shielding sufficient that the scatter radiation from the useful beam is minimized. * Protective barriers of at least 0.25 mm lead equivalency must be used to attenuate scatter radiation above the tabletop. This shielding does not replace the lead garments worn by personnel. Scattered radiation under the table must be attenuated by at least 0.25 mm lead equivalency shielding. * Additionally, most c-arm fluoroscopes have a warning beeper or light that activate when the beam is on, some have both. Never inactivate any warning devices, and keep ones foot off the foot pedal whenever possible. * Methods of limiting radiation exposure include: o making certain that the fluoroscopy unit is functioning properly through routine maintenance, o limiting fluoroscopic exposure time, o reducing fields of exposure through collimation, o keeping the X-ray source under the table by avoiding cross-table lateral visualization when possible, and o bringing the image intensifier down close to the patient b) Protection to personnel There are therefore three basic ways to minimize dose: * Reduce time of exposure * Use the inverse square law-doubling your distance away quarter your exposure * Use shielding by barrier These basics known as Cardinal Principle which is important to achieved ALARA. i) Time Radiation dose is directly proportional to the time, those by doubling the radiation time the dose is doubled and by having the radiation time the doses halved. Many factors impact the on time of a fluoroscopic procedure. The exposure time is related to radiation exposure and exposure rate (exposure per unit time) as follows: Exposure time = Exposure/Exposure rate Exposure = Exposure rate x time The algebraic expressions simply imply that if the exposure time is kept short, then the resulting dose to the individual is small. Method of reducing exposure time include meticulous advanced planning of the procedure, judicious use of contrast enhancement, appropriate positioning of the patient, orientation of the fluoroscope unit prior to beginning the procedure. ii) Distance The second radiation protection action relates to the distance between the source of radiation and the exposed individual. The exposure to the individual decreases inversely as the square of the distance. This is known as the inverse square law, which is stated mathematically as: where I is the intensity of radiation and d is the distance between the radiation source and the exposed individual. For example, when the distance is doubled the exposure is reduced by a factor of four. In mobile radiography, where there is no fixed protective control booth, the technologist should remain at least 2 m from the patient, the x-ray tube, and the primary beam during the exposure. In this respect, the ICRP (1982), as well as the NCRP (1989a), recommended that the length of the exposure cord on mobile radiographic units be at least 2 m long. Another important consideration with respect to distance relates to the source-to-image receptor distance (SID). The appropriate SIDs for various examinations must always be maintained because an incorrect SID could mean a second exposure to the patient. Long SID results in less divergent beam and thus decreases the concentration of photons in the patients. Short SID results in the reverse action and increases the patient dose. Hence the longest possible SID should be employed in examinations. However, if a greater than standard SID is used then greater intensity of radiation would be required to produce the same film density. Therefore it is recommended that only standard SIDs should be used. iii) Shielding Shielding procedure the most utilitarian results in the reduction of staff dose as there are times when the procedure list simply must function in close proximity, even directly cines fluoroscopy. In these circumstances there simply is no substitute for the best modern flexible lead gloves, lead glasses, lightweight lead apron and lead lined thyroid shield available. Appropriate shielding is mandatory for the safe use of ionizing radiation for medical imaging. Other method of shielding includes beam collimation, protective drapes and panels. Shielding of occupational workers can be achieved by following methods: * Personnel should remain in the radiation environment only when necessary (step behind the control booth, or leave the room when practical) * The distance between the personnel and the patient should be maximized when practical as the intensity of radiation decreases as the square of distance (inverse square law). * Shielding apparel should be used as and when necessary which comprise of lead aprons, eye glasses with side shields, hand gloves and thyroid shields. Lead aprons are shielding apparel recommended for use by radiation workers. These are classified as a secondary barrier to the effects of ionizing radiation. These aprons protect an individual only from secondary (scattered) radiation, not the primary beam. The thickness of lead in the protective apparel determines the protection it provides. It is known that 0.25 mm lead thickness attenuates 66% of the beam at 75kVp and 1mm attenuates 99% of the beam at same kVp. It is recommended that for general purpose radiography the minimum thickness of lead equivalent in the protective apparel should be 0.5mm. It is recommended that women radiation workers should wear a customized lead apron that reaches below mid thigh level and wraps completely around the pelvis. This would eliminate an accidental exposure to a concept us. Other protective apparel included eye glasses with side shields, thyroid shields and hand gloves. The minimum protective lead equivalents in hand gloves and thyroid shields should be 0.5mm. Lead lined glass and thyroid shield likewise reduce 90% of the exposure to the eyes and thyroid respectively. Lead lined gloves reduce radiation exposure to the hands; however they are no substitute for strict observation of appropriate fluoroscopic hygiene. Gloves should be considered as an effective means of reducing scatter radiation only. 2. State five clinical indications for the patient undergo the angiography procedure. 3. Explain the patient care management before, during and after the procedure Before a procedure: * Patients undergoing an angiogram are advised to stop eating and drinking eight hours prior to the procedure. * They must remove all jewelry before the procedure and change into a hospital gown. * If the arterial puncture is to be made in the armpit or groin area, shaving may be required. * A sedative may be administered to relax the patient for the procedure. * An IV line will also be inserted into a vein in the patients arm before the procedure begins in case medication or blood products are required during the angiogram. * Be aware of and follow all Local Rules and protocols * Prior to the angiography procedure, patients will be briefed on the details of the test, the benefits and risks, and the possible complications involved, and asked to sign an informed consent form. * Ensure that all exposures are justified and there is informed consent * Check patient identity * Position patient comfortably flat, with arm above head where possible * Ensure all members of staff in room are wearing suitable. For operations this should be lead glasses, thyroid collar and wrap-around lead apron * Check all staff are wearing radiation monitors correctly * Use all available lead shielding appropriately sited * Position table before screening * Keep tube current as low as possible and kVp as high as possible for cardiac studies, 60 ââ¬â 90 kV is appropriate * Keep x ray tube at maximum and image intensifier / receptor at minimum distance from patient * Check all staff are as far away as possible in their role * Use dose reduction programmers when possible * Perform acquisitions on full inspiration where possible * Collimate closely to area of interest * Prolonged procedures: reduce dose to the irradiated skin eg. Change beam angulations * Minimize fluoroscopy time, high dose rate time and no of acquisitions * Remember software features, such as replay fluoro to minimize dose * Dont over use geometric magnification * Remove grid for small patients or when image intensifier / detector cannot be placed close to patient * Check and record screening time and DAP at the end of the case and review against the DRL. During the procedure: * The radiologic technologist will position you on the exam table. A radiologist a physician who specializes in the diagnostic interpretation of medical images will administer a local anesthetic and then make a small nick in your skin so that a thin catheter can be inserted into an artery or vein. The catheter is a flexible, hollow tube about the size of a strand of spaghetti. It usually is inserted into an artery in your groin, although in some cases your arm or another site will be selected for the catheter. * The radiologist will ease the catheter into the artery or vein and gently guide it to the area under investigation. The radiologist will be able to watch the movement of the catheter on a fluoroscope, which is an x-ray unit combined with a television monitor. * When the catheter reaches the area under study, the contrast agent will be injected through the catheter. By watching the fluoroscope screen, the radiologist will be able to see the outline of your blood vessels and identify any blockages or other irregularities. * Angiography procedures can range in time from less than an hour to three hours or more. It is important that you relax and remain as still as possible during the examination. The radiologic technologist and radiologist will stay in the room with you throughout the procedure. If you experience any difficulty, let them know. * Angiography also can be performed using magnetic resonance instead of x-rays to produce images of the blood vessels; this procedure is known as magnetic resonance angiography (MRA) or magnetic resonance venography (MRV). After the procedure: * Because life-threatening internal bleeding is a possible complication of an arterial puncture, an overnight stay in the hospital is sometimes recommended following an angiography procedure, particularly with cerebral and coronary angiograms. * If the procedure is performed on an outpatient basis, the patient is typically kept under close observation for a period of at six to 12 hours before being released. * If the arterial puncture was performed in the femoral artery, the patient will be instructed to keep his leg straight and relatively immobile during the observation period. * The patients blood pressure and vital signs will be monitored and the puncture site observed closely. Pain medication may be prescribed if the patient is experiencing discomfort from the puncture, and a cold pack is applied to the site to reduce swelling. It is normal for the puncture site to be sore and bruised for several weeks. * The patient may also develop a hematoma, a hard mass created by the blood vessels broken during the procedure. Hematomas should be watched carefully, as they may indicate continued bleeding of the arterial puncture site. * Angiography patients are also advised to enjoy two to three days of rest and relaxation after the procedure in order to avoid placing any undue stress on the arterial puncture. Patients who experience continued bleeding or abnormal swelling of the puncture site, sudden dizziness, or chest pains in the days following an angiography procedure should seek medical attention immediately. * Patients undergoing a fluorescein angiography should not drive or expose their eyes to direct sunlight for 12 hours following the procedure. 4. Identify the type of contrast medium, the dose and delivering technique in angiography procedure. * Reducing radiation doses to the patient also generally reduces doses to the medical personnel. à · Angiography procedure is using fluoroscopy imaging technique which is a real-time imaging technique. 5. List down the catheters and guide wires inclusive of size, shape and the hole type that are used in angiography procedures. The use of lead gloves during procedures is unusual as they are cumbersome and difficult to work in. The automatic brightness control will increase the exposure to go through two layers and one only protects the hand, so if they are going to be used a programme that sets the radiation factors rather than allowing adjustment may be appropriate. In practice, with careful collimation and attenuation to detail it should not necessary for the operators hand to be in the primary beam and only close to it for short periods. While doing catheterization, radiologist should do it behind the lead glass viewer which consists of lead equivalent glass of 0.25mm thickness. Geometric consideration is one of the important things in angiography because source of exposure to personnel is mainly from scattered radiation from the patient. So, it is important to minimize the amount of scattered radiation to personnel. This can be achieved by geometric consideration involving the x-ray tube, patient and image intensifier. The image intensifier should be as close as possible to patient to minimize the amount of scattered radiation hitting personnel. Because in angiography room is sterile for all things, personnel such as radiologist, nurses, radiographer or student should wear shoes which are prepared only. Make sure that film badges always outside personnel body to measure the dose receive to the personnel. The most important thing to remember is that all individuals should be fully trained and learned to be responsible for radiation safety. Involvement of a radiation expert is essential and is particularly useful in equipment specification, assessment and quality assurance, but also in the formulation of Local Rules. Technique Reduces Physician Radiation Exposure During Angiography Current technique requires that physicians performing radiation procedures wear lead gowns. The new technique involves use of a body length floor mounted lead plastic panel to protect to physicians as they monitor patients angiograms and control exam table movement. An extension bar allows the physician to remain safely behind the shield and still retain table control for panning. In the study, researchers recorded radiation exposure to various parts of a physicians body during 25 coronary angiography procedures and compared those results with radiation exposure during angiography on 25 patients using conventional radiation protection. A lead apron, thyroid shield, eyeglasses and facemask were used in both techniques, but a ceiling mounted shield was used in the conventional technique. The researchers placed radiation badges outside and inside the facemask; outside and inside the thyroid shield; on the right and left arm; outside and inside the lead apron; and on the right and left leg. The new equipment resulted in a 90 percent reduction in radiation exposure to the physicians head, arms, and legs. Exposure of the thyroid and torso was minimal with both techniques. Enhanced physician radiation protection during coronary angiography is readily achievable with this new technique, said Martin Magram, M.D., of the University of Maryland Medical Center in Baltimore, Md. Dr. Magram presented the study results on May 3 at the American Roentgen Ray Society Annual Meeting in Vancouver, British Columbia. Dr. Magram pointed out that by freeing physicians from the need to wear lead gowns, the new technique could preserve their ability to benefit patients. It may extend by years their ability to apply the skills they have developed over long careers of serving patients, noted Dr. Magram. New methods of radiation protection must parallel the development of new radiation techniques, added Dr. Magram. The key is to limit medical workers radiation exposure with effective and easy-to-use techniques, and the use of this extension bar and lead plastic shield may be such a technique. Definition Angiography is the x-ray study of the blood vessels. An angiogram uses a radiopaque substance, or dye, to make the blood vessels visible under x ray. Arteriography is a type of angiography that involves the study of the arteries. Purpose Angiography is used to detect abnormalities or blockages in the blood vessels (called occlusions) throughout the circulatory system and in some organs. The procedure is commonly used to identify atherosclerosis; to diagnose heart disease; to evaluate kidney function and detect kidney cysts or tumors; to detect an aneurysm (an abnormal bulge of an artery that can rupture leading to hemorrhage), tumor, blood clot, or arteriovenous malformations (abnormals tangles of arteries and veins) in the brain; and to diagnose problems with the retina of the eye. It is also used to give surgeons an accurate map of the heart prior to open-heart surgery, or of the brain prior to neurosurgery. Precautions Patients with kidney disease or injury may suffer further kidney damage from the contrast mediums used for angiography. Patients who have blood clotting problems, have a known allergy to contrast mediums, or are allergic to iodine, a component of some contrast mediums, may also not be suitable candidates for an angiography procedure. Because x rays carry risks of ionizing radiation exposure to the fetus, pregnant women are also advised to avoid this procedure. Description Angiography is usually performed at a hospital by a trained radiologist and assisting technician or nurse. It takes place in an x-ray or fluoroscopy suite, and for most types of angiograms, the patients vital signs will be monitored throughout the procedure. Angiography requires the injection of a contrast dye that makes the blood vessels visible to x ray. The dye is injected through a procedure known as arterial puncture. The puncture is usually made in the groin area, armpit, inside elbow, or neck. The site is cleaned with an antiseptic agent and injected with a local anesthetic. First, a small incision is made in the skin to help the needle pass. A needle containing an inner wire called a stylet is inserted through the skin into the artery. When the radiologist has punctured the artery with the needle, the stylet is removed and replaced with another long wire called a guide wire. It is normal for blood to spout out of the needle before the guide wire is inserted. The guide wire is fed through the outer needle into the artery and to the area that requires angiographic study. A fluoroscopic screen that displays a view of the patients vascular system is used to pilot the wire to the correct location. Once it is in position, the needle is removed and a catheter is slid over the length of the guide wire until it to reaches the area of study. The guide wire is removed and the catheter is left in place in preparation for the injection of the contrast medium, or dye. Depending on the type of angiography procedure being performed, the contrast medium is either injected by hand with a syringe or is mechanically injected with an automatic injector connected to the catheter. An automatic injector is used frequently because it is able to propel a large volume of dye very quickly to the angiogram site. The patient is warned that the injection will start, and instructed to remain very still. The injection causes some mild to moderate discomfort. Possible side effects or reactions include headache, dizziness, irregular heartbeat, nausea, warmth, burning sensation, and chest pain, but they usually last only momentarily. To view the area of study from different angles or perspectives, the patient may be asked to change positions several times, and subsequent dye injections may be administered. During any injection, the patient or the camera may move. Throughout the dye injection procedure, x-ray pictures and/or fluoroscopic pictures (or moving x rays) will be taken. Because of the high pressure of arterial blood flow, the dye will dissipate through the patients system quickly, so pictures must be taken in rapid succession. An automatic film changer is used because the manual changing of x-ray plates can eat up valuable time. Once the x rays are complete, the catheter is slowly and carefully removed from the patient. Pressure is applied to the site with a sandbag or other weight for 10-20 minutes in order for clotting to take place and the arterial puncture to reseal itself. A pressure bandage is then applied. Most angiograms follow the general procedures outlined above, but vary slightly depending on the area of the vascular system being studied. A variety of common angiography procedures are outlined below: Cerebral angiography Cerebral angiography is used to detect aneurysms, blood clots, and other vascular irregularities in the brain. The catheter is inserted into the femoral or carotid artery and the injected contrast medium travels through the blood vessels on the brain. Patients frequently experience headache, warmth, or a burning sensation in the head or neck during the injection portion of the procedure. A cerebral angiogram takes two to four hours to complete. Coronary angiography Coronary angiography is administered by a cardiologist with training in radiology or, occasionally, by a radiologist. The arterial puncture is typically given in the femoral artery, and the cardiologist uses a guide wire and catheter to perform a contrast injection and x-ray series on the coronary arteries. The catheter may also be placed in the left ventricle to examine the mitral and aortic valves of the heart. If the cardiologist requires a view of the right ventricle of the heart or of the tricuspid or pulmonic valves, the catheter will be inserted through a large vein and guided into the right ventricle. The catheter also serves the purpose of monitoring blood pressures in these different locations inside the heart. The angiogram procedure takes several hours, depending on the complexity of the procedure. Pulmonary angiography Pulmonary, or lung, angiography is performed to evaluate blood circulation to the lungs. It is also considered the most accurate diagnostic test for detecting a pulmonary embolism. The procedure differs from cerebral and coronary angiograms in that the guide wire and catheter are inserted into a vein instead of an artery, and are guided up through the chambers of the heart and into the pulmonary artery. Throughout the procedure, the patients vital signs are monitored to ensure that the catheter doesnt cause arrhythmias, or irregular heartbeats. The contrast medium is then injected into the pulmonary artery where it circulates through the lung capillaries. The test typically takes up to 90 minutes. Kidney angiography Patients with chronic renal disease or injury can suffer further damage to their kidneys from the contrast medium used in a kidney angiogram, yet they often require the test to evaluate kidney function. These patients should be well-hydrated with a intravenous saline drip before the procedure, and may benefit from available medications (e.g., dopamine) that help to protect the kidney from further injury due to contrast agents. During a kidney angiogram, the guide wire and catheter are inserted into the femoral artery in the groin area and advanced through the abdominal aorta, the main artery in the abdomen, and into the renal arteries. The procedure will take approximately one hour. Fluorescein angiography Fluorescein angiography is used to diagnose retinal problems and circulatory disorders. It is typically conducted as an outpatient procedure. The patients pupils are dilated with eye drops and he rests his chin and forehead against a bracing apparatus to keep it still. Sodium fluorescein dye is then injected with a syringe into a vein in the patients arm. The dye will travel through the patients body and into the blood vessels of the eye. The procedure does not require x rays. Instead, a rapid series of close-up photographs of the patients eyes are taken, one set immediately after the dye is injected, and a second set approximately 20 minutes later once the dye has moved through the patients vascular system. The entire procedure takes up to one hour. Celiac and mesenteric angiography Celiac and mesenteric angiography involves x-ray exploration of the celiac and mesenteric arteries, arterial branches of the abdominal aorta that supply blood to the abdomen and digestive system. The test is commonly used to detect aneurysm, thrombosis, and signs of ischemia in the celiac and mesenteric arteries, and to locate the source of gastrointestinal bleeding. It is also used in the diagnosis of a number of conditions, including portal hypertension, and cirrhosis. The procedure can take up to three hours, depending on the number of blood vessels studied. Splenoportography A splenoportograph is a variation of an angiogram that involves the injection of contrast medium directly into the spleen to view the splenic and portal veins. It is used to diagnose blockages in the splenic vein and portal vein thrombosis and to assess the strength and location of the vascular system prior to liver transplantation. Most angiography procedures are typically paid for by major medical insurance. Patients should check with their individual insurance plans to determine their coverage. Aftercare Risks Because angiography involves puncturing an artery, internal bleeding or hemorrhage are possible complications of the test. As with any invasive procedure, infection of the puncture site or bloodstream is also a risk, but this is rare. A stroke or heart attack may be triggered by an angiogram if blood clots or plaque on the inside of the arterial wall are dislodged by the catheter and form a blockage in the blood vessels or artery. The heart may also become irritated by the movement of the catheter through its chambers during pulmonary and coronary angiography procedures, and arrhythmias may develop. Patients who develop an allergic reaction to the contrast medium used in angiography may experience a variety of symptoms, including swelling, difficulty breathing, heart failure, or a sudden drop in blood pressure. If the patient is aware of the allergy before the test is administered, certain medications can be administered at that time to counteract the reaction. Angiography involves minor exposure to radiation through the x rays and fluoroscopic guidance used in the procedure. Unless the patient is pregnant, or multiple radiological or fluoroscopic studies are required, the small dose of radiation incurred during a single procedure poses little risk. However, multiple studies requiring fluoroscopic exposure that are conducted in a short time period have been known to cause skin necrosis in some individuals. This risk can be minimized by careful monitoring and documentation of cumulative radiation doses administered to these patients. Normal results The results of an angiogram or arteriogram depend on the artery or organ system being examined. Generally, test results should display a normal and unimpeded flow of blood through the vascular system. Fluorescein angiography should result in no leakage of fluorescein dye through the retinal blood vessels. Abnormal results Abnormal results of an angiography may display a restricted blood vessel or arterial blood flow (ischemia) or an irregular placement or location of blood vessels. The results of an angiography vary widely by the type of procedure performed, and should be interpreted and explained to the patient by a trained radiologist. Arteriosclerosis A chronic condition characterized by thickening and hardening of the arteries and the build-up of plaque on the arterial walls. Arteriosclerosis can slow or impair blood circulation. Carotid artery An artery located in the neck. Catheter A long, thin, flexible tube used in angiography to inject contrast material into the arteries. Cirrhosis A condition characterized by the destruction of healthy liver tissue. A cirrhotic liver is scarred and cannot break down the proteins in the bloodstream. Cirrhosis is associated with portal hypertension. Embolism A blood clot, air bubble, or clot of foreign material that travels and blocks the flow of blood in an artery. When blood supply to a tissue or organ is blocked by an embolism, infarction, or death of the tissue the artery feeds, occurs. Without immediate and appropriate treatment, an embolism can be fatal. Femoral artery An artery located in the groin area that is the most frequently accessed site for arterial puncture in angiography. Fluorescein dye An orange dye used to illuminate the blood vessels of the retina in fluorescein angiography. Fluoroscopic screen A fluorescent screen which displays moving x-rays of the body. Fluoroscopy allows the radiologist to visualize the guide wire and catheter he is moving through the patients artery. Guide wire A wire that is inserted into an artery to guides a catheter to a certain location in the body. Iscehmia A lack of normal blood supply to a organ or body part because of blockages or constriction of the blood vessels. Necrosis Cellular or tissue death; skin necrosis may be caused by multiple, consecutive doses of radiation from fluoroscopic or x-ray procedures. Plaque Fatty material that is deposited on the inside of the arterial wall. Portal hypertension A condition caused by cirrhosis of the liver. It is characterized by impaired or reversed blood flow from the portal vein to the liver, an enlarged spleen, and dilated veins in the esophagus and stomach. Portal vein thrombosis The development of a blood clot in the vein that brings blood into the liver. Untreated portal vein thrombosis causes portal hypertension. For Your Information Books * Baum, Stanley, and Michael J. Pentecost, eds. Abrams Angiography. 4th ed. Radiation Protection for Angiography Procedure. Radiation Protection for Angiography Procedure. Fluoroscopic procedure produces the greatest patient radiation exposure rate in diagnostic radiology. Therefore the radiation protection in fluoroscopy is very important. Several feature and techniques in fluoroscopy are designed for protection to the patient during fluoroscopic procedure. a) Protection to Patient * A dead-man switch is a device (switch) constructed so that a circuit closing contact can only be maintained by continuous pressure on the switch by the operator. Therefore, when the machine is turned on by any means, whether by the push button at the control panel, or by the foot pedal, this switch must be held in for the machine to remain on. * The on-time of the fluoroscopic tube must be controlled by a timing device, and must end alarm when the exposure exceeds 5 minutes. An audible signal must alert the user to the completion of the preset on time. This signal will remain on until the timing device is reset. * The X-ray tube used for fluoroscopic must not produce X-rays unless a barrier is in position to intercept the entire cross-section of the useful beam. The fluoroscopic imaging assembly must be provided with shielding sufficient that the scatter radiation from the useful beam is minimized. * Protective barriers of at least 0.25 mm lead equivalency must be used to attenuate scatter radiation above the tabletop. This shielding does not replace the lead garments worn by personnel. Scattered radiation under the table must be attenuated by at least 0.25 mm lead equivalency shielding. * Additionally, most c-arm fluoroscopes have a warning beeper or light that activate when the beam is on, some have both. Never inactivate any warning devices, and keep ones foot off the foot pedal whenever possible. * Methods of limiting radiation exposure include: o making certain that the fluoroscopy unit is functioning properly through routine maintenance, o limiting fluoroscopic exposure time, o reducing fields of exposure through collimation, o keeping the X-ray source under the table by avoiding cross-table lateral visualization when possible, and o bringing the image intensifier down close to the patient b) Protection to personnel There are therefore three basic ways to minimize dose: * Reduce time of exposure * Use the inverse square law-doubling your distance away quarter your exposure * Use shielding by barrier These basics known as Cardinal Principle which is important to achieved ALARA. i) Time Radiation dose is directly proportional to the time, those by doubling the radiation time the dose is doubled and by having the radiation time the doses halved. Many factors impact the on time of a fluoroscopic procedure. The exposure time is related to radiation exposure and exposure rate (exposure per unit time) as follows: Exposure time = Exposure/Exposure rate Exposure = Exposure rate x time The algebraic expressions simply imply that if the exposure time is kept short, then the resulting dose to the individual is small. Method of reducing exposure time include meticulous advanced planning of the procedure, judicious use of contrast enhancement, appropriate positioning of the patient, orientation of the fluoroscope unit prior to beginning the procedure. ii) Distance The second radiation protection action relates to the distance between the source of radiation and the exposed individual. The exposure to the individual decreases inversely as the square of the distance. This is known as the inverse square law, which is stated mathematically as: where I is the intensity of radiation and d is the distance between the radiation source and the exposed individual. For example, when the distance is doubled the exposure is reduced by a factor of four. In mobile radiography, where there is no fixed protective control booth, the technologist should remain at least 2 m from the patient, the x-ray tube, and the primary beam during the exposure. In this respect, the ICRP (1982), as well as the NCRP (1989a), recommended that the length of the exposure cord on mobile radiographic units be at least 2 m long. Another important consideration with respect to distance relates to the source-to-image receptor distance (SID). The appropriate SIDs for various examinations must always be maintained because an incorrect SID could mean a second exposure to the patient. Long SID results in less divergent beam and thus decreases the concentration of photons in the patients. Short SID results in the reverse action and increases the patient dose. Hence the longest possible SID should be employed in examinations. However, if a greater than standard SID is used then greater intensity of radiation would be required to produce the same film density. Therefore it is recommended that only standard SIDs should be used. iii) Shielding Shielding procedure the most utilitarian results in the reduction of staff dose as there are times when the procedure list simply must function in close proximity, even directly cines fluoroscopy. In these circumstances there simply is no substitute for the best modern flexible lead gloves, lead glasses, lightweight lead apron and lead lined thyroid shield available. Appropriate shielding is mandatory for the safe use of ionizing radiation for medical imaging. Other method of shielding includes beam collimation, protective drapes and panels. Shielding of occupational workers can be achieved by following methods: * Personnel should remain in the radiation environment only when necessary (step behind the control booth, or leave the room when practical) * The distance between the personnel and the patient should be maximized when practical as the intensity of radiation decreases as the square of distance (inverse square law). * Shielding apparel should be used as and when necessary which comprise of lead aprons, eye glasses with side shields, hand gloves and thyroid shields. Lead aprons are shielding apparel recommended for use by radiation workers. These are classified as a secondary barrier to the effects of ionizing radiation. These aprons protect an individual only from secondary (scattered) radiation, not the primary beam. The thickness of lead in the protective apparel determines the protection it provides. It is known that 0.25 mm lead thickness attenuates 66% of the beam at 75kVp and 1mm attenuates 99% of the beam at same kVp. It is recommended that for general purpose radiography the minimum thickness of lead equivalent in the protective apparel should be 0.5mm. It is recommended that women radiation workers should wear a customized lead apron that reaches below mid thigh level and wraps completely around the pelvis. This would eliminate an accidental exposure to a concept us. Other protective apparel included eye glasses with side shields, thyroid shields and hand gloves. The minimum protective lead equivalents in hand gloves and thyroid shields should be 0.5mm. Lead lined glass and thyroid shield likewise reduce 90% of the exposure to the eyes and thyroid respectively. Lead lined gloves reduce radiation exposure to the hands; however they are no substitute for strict observation of appropriate fluoroscopic hygiene. Gloves should be considered as an effective means of reducing scatter radiation only. 2. State five clinical indications for the patient undergo the angiography procedure. 3. Explain the patient care management before, during and after the procedure Before a procedure: * Patients undergoing an angiogram are advised to stop eating and drinking eight hours prior to the procedure. * They must remove all jewelry before the procedure and change into a hospital gown. * If the arterial puncture is to be made in the armpit or groin area, shaving may be required. * A sedative may be administered to relax the patient for the procedure. * An IV line will also be inserted into a vein in the patients arm before the procedure begins in case medication or blood products are required during the angiogram. * Be aware of and follow all Local Rules and protocols * Prior to the angiography procedure, patients will be briefed on the details of the test, the benefits and risks, and the possible complications involved, and asked to sign an informed consent form. * Ensure that all exposures are justified and there is informed consent * Check patient identity * Position patient comfortably flat, with arm above head where possible * Ensure all members of staff in room are wearing suitable. For operations this should be lead glasses, thyroid collar and wrap-around lead apron * Check all staff are wearing radiation monitors correctly * Use all available lead shielding appropriately sited * Position table before screening * Keep tube current as low as possible and kVp as high as possible for cardiac studies, 60 ââ¬â 90 kV is appropriate * Keep x ray tube at maximum and image intensifier / receptor at minimum distance from patient * Check all staff are as far away as possible in their role * Use dose reduction programmers when possible * Perform acquisitions on full inspiration where possible * Collimate closely to area of interest * Prolonged procedures: reduce dose to the irradiated skin eg. Change beam angulations * Minimize fluoroscopy time, high dose rate time and no of acquisitions * Remember software features, such as replay fluoro to minimize dose * Dont over use geometric magnification * Remove grid for small patients or when image intensifier / detector cannot be placed close to patient * Check and record screening time and DAP at the end of the case and review against the DRL. During the procedure: * The radiologic technologist will position you on the exam table. A radiologist a physician who specializes in the diagnostic interpretation of medical images will administer a local anesthetic and then make a small nick in your skin so that a thin catheter can be inserted into an artery or vein. The catheter is a flexible, hollow tube about the size of a strand of spaghetti. It usually is inserted into an artery in your groin, although in some cases your arm or another site will be selected for the catheter. * The radiologist will ease the catheter into the artery or vein and gently guide it to the area under investigation. The radiologist will be able to watch the movement of the catheter on a fluoroscope, which is an x-ray unit combined with a television monitor. * When the catheter reaches the area under study, the contrast agent will be injected through the catheter. By watching the fluoroscope screen, the radiologist will be able to see the outline of your blood vessels and identify any blockages or other irregularities. * Angiography procedures can range in time from less than an hour to three hours or more. It is important that you relax and remain as still as possible during the examination. The radiologic technologist and radiologist will stay in the room with you throughout the procedure. If you experience any difficulty, let them know. * Angiography also can be performed using magnetic resonance instead of x-rays to produce images of the blood vessels; this procedure is known as magnetic resonance angiography (MRA) or magnetic resonance venography (MRV). After the procedure: * Because life-threatening internal bleeding is a possible complication of an arterial puncture, an overnight stay in the hospital is sometimes recommended following an angiography procedure, particularly with cerebral and coronary angiograms. * If the procedure is performed on an outpatient basis, the patient is typically kept under close observation for a period of at six to 12 hours before being released. * If the arterial puncture was performed in the femoral artery, the patient will be instructed to keep his leg straight and relatively immobile during the observation period. * The patients blood pressure and vital signs will be monitored and the puncture site observed closely. Pain medication may be prescribed if the patient is experiencing discomfort from the puncture, and a cold pack is applied to the site to reduce swelling. It is normal for the puncture site to be sore and bruised for several weeks. * The patient may also develop a hematoma, a hard mass created by the blood vessels broken during the procedure. Hematomas should be watched carefully, as they may indicate continued bleeding of the arterial puncture site. * Angiography patients are also advised to enjoy two to three days of rest and relaxation after the procedure in order to avoid placing any undue stress on the arterial puncture. Patients who experience continued bleeding or abnormal swelling of the puncture site, sudden dizziness, or chest pains in the days following an angiography procedure should seek medical attention immediately. * Patients undergoing a fluorescein angiography should not drive or expose their eyes to direct sunlight for 12 hours following the procedure. 4. Identify the type of contrast medium, the dose and delivering technique in angiography procedure. * Reducing radiation doses to the patient also generally reduces doses to the medical personnel. à · Angiography procedure is using fluoroscopy imaging technique which is a real-time imaging technique. 5. List down the catheters and guide wires inclusive of size, shape and the hole type that are used in angiography procedures. The use of lead gloves during procedures is unusual as they are cumbersome and difficult to work in. The automatic brightness control will increase the exposure to go through two layers and one only protects the hand, so if they are going to be used a programme that sets the radiation factors rather than allowing adjustment may be appropriate. In practice, with careful collimation and attenuation to detail it should not necessary for the operators hand to be in the primary beam and only close to it for short periods. While doing catheterization, radiologist should do it behind the lead glass viewer which consists of lead equivalent glass of 0.25mm thickness. Geometric consideration is one of the important things in angiography because source of exposure to personnel is mainly from scattered radiation from the patient. So, it is important to minimize the amount of scattered radiation to personnel. This can be achieved by geometric consideration involving the x-ray tube, patient and image intensifier. The image intensifier should be as close as possible to patient to minimize the amount of scattered radiation hitting personnel. Because in angiography room is sterile for all things, personnel such as radiologist, nurses, radiographer or student should wear shoes which are prepared only. Make sure that film badges always outside personnel body to measure the dose receive to the personnel. The most important thing to remember is that all individuals should be fully trained and learned to be responsible for radiation safety. Involvement of a radiation expert is essential and is particularly useful in equipment specification, assessment and quality assurance, but also in the formulation of Local Rules. Technique Reduces Physician Radiation Exposure During Angiography Current technique requires that physicians performing radiation procedures wear lead gowns. The new technique involves use of a body length floor mounted lead plastic panel to protect to physicians as they monitor patients angiograms and control exam table movement. An extension bar allows the physician to remain safely behind the shield and still retain table control for panning. In the study, researchers recorded radiation exposure to various parts of a physicians body during 25 coronary angiography procedures and compared those results with radiation exposure during angiography on 25 patients using conventional radiation protection. A lead apron, thyroid shield, eyeglasses and facemask were used in both techniques, but a ceiling mounted shield was used in the conventional technique. The researchers placed radiation badges outside and inside the facemask; outside and inside the thyroid shield; on the right and left arm; outside and inside the lead apron; and on the right and left leg. The new equipment resulted in a 90 percent reduction in radiation exposure to the physicians head, arms, and legs. Exposure of the thyroid and torso was minimal with both techniques. Enhanced physician radiation protection during coronary angiography is readily achievable with this new technique, said Martin Magram, M.D., of the University of Maryland Medical Center in Baltimore, Md. Dr. Magram presented the study results on May 3 at the American Roentgen Ray Society Annual Meeting in Vancouver, British Columbia. Dr. Magram pointed out that by freeing physicians from the need to wear lead gowns, the new technique could preserve their ability to benefit patients. It may extend by years their ability to apply the skills they have developed over long careers of serving patients, noted Dr. Magram. New methods of radiation protection must parallel the development of new radiation techniques, added Dr. Magram. The key is to limit medical workers radiation exposure with effective and easy-to-use techniques, and the use of this extension bar and lead plastic shield may be such a technique. Definition Angiography is the x-ray study of the blood vessels. An angiogram uses a radiopaque substance, or dye, to make the blood vessels visible under x ray. Arteriography is a type of angiography that involves the study of the arteries. Purpose Angiography is used to detect abnormalities or blockages in the blood vessels (called occlusions) throughout the circulatory system and in some organs. The procedure is commonly used to identify atherosclerosis; to diagnose heart disease; to evaluate kidney function and detect kidney cysts or tumors; to detect an aneurysm (an abnormal bulge of an artery that can rupture leading to hemorrhage), tumor, blood clot, or arteriovenous malformations (abnormals tangles of arteries and veins) in the brain; and to diagnose problems with the retina of the eye. It is also used to give surgeons an accurate map of the heart prior to open-heart surgery, or of the brain prior to neurosurgery. Precautions Patients with kidney disease or injury may suffer further kidney damage from the contrast mediums used for angiography. Patients who have blood clotting problems, have a known allergy to contrast mediums, or are allergic to iodine, a component of some contrast mediums, may also not be suitable candidates for an angiography procedure. Because x rays carry risks of ionizing radiation exposure to the fetus, pregnant women are also advised to avoid this procedure. Description Angiography is usually performed at a hospital by a trained radiologist and assisting technician or nurse. It takes place in an x-ray or fluoroscopy suite, and for most types of angiograms, the patients vital signs will be monitored throughout the procedure. Angiography requires the injection of a contrast dye that makes the blood vessels visible to x ray. The dye is injected through a procedure known as arterial puncture. The puncture is usually made in the groin area, armpit, inside elbow, or neck. The site is cleaned with an antiseptic agent and injected with a local anesthetic. First, a small incision is made in the skin to help the needle pass. A needle containing an inner wire called a stylet is inserted through the skin into the artery. When the radiologist has punctured the artery with the needle, the stylet is removed and replaced with another long wire called a guide wire. It is normal for blood to spout out of the needle before the guide wire is inserted. The guide wire is fed through the outer needle into the artery and to the area that requires angiographic study. A fluoroscopic screen that displays a view of the patients vascular system is used to pilot the wire to the correct location. Once it is in position, the needle is removed and a catheter is slid over the length of the guide wire until it to reaches the area of study. The guide wire is removed and the catheter is left in place in preparation for the injection of the contrast medium, or dye. Depending on the type of angiography procedure being performed, the contrast medium is either injected by hand with a syringe or is mechanically injected with an automatic injector connected to the catheter. An automatic injector is used frequently because it is able to propel a large volume of dye very quickly to the angiogram site. The patient is warned that the injection will start, and instructed to remain very still. The injection causes some mild to moderate discomfort. Possible side effects or reactions include headache, dizziness, irregular heartbeat, nausea, warmth, burning sensation, and chest pain, but they usually last only momentarily. To view the area of study from different angles or perspectives, the patient may be asked to change positions several times, and subsequent dye injections may be administered. During any injection, the patient or the camera may move. Throughout the dye injection procedure, x-ray pictures and/or fluoroscopic pictures (or moving x rays) will be taken. Because of the high pressure of arterial blood flow, the dye will dissipate through the patients system quickly, so pictures must be taken in rapid succession. An automatic film changer is used because the manual changing of x-ray plates can eat up valuable time. Once the x rays are complete, the catheter is slowly and carefully removed from the patient. Pressure is applied to the site with a sandbag or other weight for 10-20 minutes in order for clotting to take place and the arterial puncture to reseal itself. A pressure bandage is then applied. Most angiograms follow the general procedures outlined above, but vary slightly depending on the area of the vascular system being studied. A variety of common angiography procedures are outlined below: Cerebral angiography Cerebral angiography is used to detect aneurysms, blood clots, and other vascular irregularities in the brain. The catheter is inserted into the femoral or carotid artery and the injected contrast medium travels through the blood vessels on the brain. Patients frequently experience headache, warmth, or a burning sensation in the head or neck during the injection portion of the procedure. A cerebral angiogram takes two to four hours to complete. Coronary angiography Coronary angiography is administered by a cardiologist with training in radiology or, occasionally, by a radiologist. The arterial puncture is typically given in the femoral artery, and the cardiologist uses a guide wire and catheter to perform a contrast injection and x-ray series on the coronary arteries. The catheter may also be placed in the left ventricle to examine the mitral and aortic valves of the heart. If the cardiologist requires a view of the right ventricle of the heart or of the tricuspid or pulmonic valves, the catheter will be inserted through a large vein and guided into the right ventricle. The catheter also serves the purpose of monitoring blood pressures in these different locations inside the heart. The angiogram procedure takes several hours, depending on the complexity of the procedure. Pulmonary angiography Pulmonary, or lung, angiography is performed to evaluate blood circulation to the lungs. It is also considered the most accurate diagnostic test for detecting a pulmonary embolism. The procedure differs from cerebral and coronary angiograms in that the guide wire and catheter are inserted into a vein instead of an artery, and are guided up through the chambers of the heart and into the pulmonary artery. Throughout the procedure, the patients vital signs are monitored to ensure that the catheter doesnt cause arrhythmias, or irregular heartbeats. The contrast medium is then injected into the pulmonary artery where it circulates through the lung capillaries. The test typically takes up to 90 minutes. Kidney angiography Patients with chronic renal disease or injury can suffer further damage to their kidneys from the contrast medium used in a kidney angiogram, yet they often require the test to evaluate kidney function. These patients should be well-hydrated with a intravenous saline drip before the procedure, and may benefit from available medications (e.g., dopamine) that help to protect the kidney from further injury due to contrast agents. During a kidney angiogram, the guide wire and catheter are inserted into the femoral artery in the groin area and advanced through the abdominal aorta, the main artery in the abdomen, and into the renal arteries. The procedure will take approximately one hour. Fluorescein angiography Fluorescein angiography is used to diagnose retinal problems and circulatory disorders. It is typically conducted as an outpatient procedure. The patients pupils are dilated with eye drops and he rests his chin and forehead against a bracing apparatus to keep it still. Sodium fluorescein dye is then injected with a syringe into a vein in the patients arm. The dye will travel through the patients body and into the blood vessels of the eye. The procedure does not require x rays. Instead, a rapid series of close-up photographs of the patients eyes are taken, one set immediately after the dye is injected, and a second set approximately 20 minutes later once the dye has moved through the patients vascular system. The entire procedure takes up to one hour. Celiac and mesenteric angiography Celiac and mesenteric angiography involves x-ray exploration of the celiac and mesenteric arteries, arterial branches of the abdominal aorta that supply blood to the abdomen and digestive system. The test is commonly used to detect aneurysm, thrombosis, and signs of ischemia in the celiac and mesenteric arteries, and to locate the source of gastrointestinal bleeding. It is also used in the diagnosis of a number of conditions, including portal hypertension, and cirrhosis. The procedure can take up to three hours, depending on the number of blood vessels studied. Splenoportography A splenoportograph is a variation of an angiogram that involves the injection of contrast medium directly into the spleen to view the splenic and portal veins. It is used to diagnose blockages in the splenic vein and portal vein thrombosis and to assess the strength and location of the vascular system prior to liver transplantation. Most angiography procedures are typically paid for by major medical insurance. Patients should check with their individual insurance plans to determine their coverage. Aftercare Risks Because angiography involves puncturing an artery, internal bleeding or hemorrhage are possible complications of the test. As with any invasive procedure, infection of the puncture site or bloodstream is also a risk, but this is rare. A stroke or heart attack may be triggered by an angiogram if blood clots or plaque on the inside of the arterial wall are dislodged by the catheter and form a blockage in the blood vessels or artery. The heart may also become irritated by the movement of the catheter through its chambers during pulmonary and coronary angiography procedures, and arrhythmias may develop. Patients who develop an allergic reaction to the contrast medium used in angiography may experience a variety of symptoms, including swelling, difficulty breathing, heart failure, or a sudden drop in blood pressure. If the patient is aware of the allergy before the test is administered, certain medications can be administered at that time to counteract the reaction. Angiography involves minor exposure to radiation through the x rays and fluoroscopic guidance used in the procedure. Unless the patient is pregnant, or multiple radiological or fluoroscopic studies are required, the small dose of radiation incurred during a single procedure poses little risk. However, multiple studies requiring fluoroscopic exposure that are conducted in a short time period have been known to cause skin necrosis in some individuals. This risk can be minimized by careful monitoring and documentation of cumulative radiation doses administered to these patients. Normal results The results of an angiogram or arteriogram depend on the artery or organ system being examined. Generally, test results should display a normal and unimpeded flow of blood through the vascular system. Fluorescein angiography should result in no leakage of fluorescein dye through the retinal blood vessels. Abnormal results Abnormal results of an angiography may display a restricted blood vessel or arterial blood flow (ischemia) or an irregular placement or location of blood vessels. The results of an angiography vary widely by the type of procedure performed, and should be interpreted and explained to the patient by a trained radiologist. Arteriosclerosis A chronic condition characterized by thickening and hardening of the arteries and the build-up of plaque on the arterial walls. Arteriosclerosis can slow or impair blood circulation. Carotid artery An artery located in the neck. Catheter A long, thin, flexible tube used in angiography to inject contrast material into the arteries. Cirrhosis A condition characterized by the destruction of healthy liver tissue. A cirrhotic liver is scarred and cannot break down the proteins in the bloodstream. Cirrhosis is associated with portal hypertension. Embolism A blood clot, air bubble, or clot of foreign material that travels and blocks the flow of blood in an artery. When blood supply to a tissue or organ is blocked by an embolism, infarction, or death of the tissue the artery feeds, occurs. Without immediate and appropriate treatment, an embolism can be fatal. Femoral artery An artery located in the groin area that is the most frequently accessed site for arterial puncture in angiography. Fluorescein dye An orange dye used to illuminate the blood vessels of the retina in fluorescein angiography. Fluoroscopic screen A fluorescent screen which displays moving x-rays of the body. Fluoroscopy allows the radiologist to visualize the guide wire and catheter he is moving through the patients artery. Guide wire A wire that is inserted into an artery to guides a catheter to a certain location in the body. Iscehmia A lack of normal blood supply to a organ or body part because of blockages or constriction of the blood vessels. Necrosis Cellular or tissue death; skin necrosis may be caused by multiple, consecutive doses of radiation from fluoroscopic or x-ray procedures. Plaque Fatty material that is deposited on the inside of the arterial wall. Portal hypertension A condition caused by cirrhosis of the liver. It is characterized by impaired or reversed blood flow from the portal vein to the liver, an enlarged spleen, and dilated veins in the esophagus and stomach. Portal vein thrombosis The development of a blood clot in the vein that brings blood into the liver. Untreated portal vein thrombosis causes portal hypertension. For Your Information Books * Baum, Stanley, and Michael J. Pentecost, eds. Abrams Angiography. 4th ed.
Sunday, January 19, 2020
The language of fashion magazines
Overture The significance of print media has been getting bigger and bigger as the time progress all over the world. Magazine is one of the popular forms of print media worldwide. There are different types of magazines with different features and attributes. They are mostly periodic- monthly and quarterly magazines are most common. The magazines generally focus a particular area and they target a particular group of people as their target readers.Such as business and economics oriented magazines are designed mostly for the business people, Science and genealogy for the young people and students, art and literature for the readers who particularly possess interest towards art and literature. Sports magazines target the young and enthusiastic sports lovers and fashion and lifestyle magazines are for the people who are concerned pretty much about their living style and modern days fashions. In this report we have selected such two fashion and life style magazines, one local and one inte rnational. Instillâ⬠the international one, published as British version and Mirror- the Bangladesh magazine regarded as one of the most rumoring and classic fashion magazine of the country. Both the magazines follow English as their media language and are published monthly. We will try to identify the approach of these two commonly oriented magazines. Both the magazines target the today's modern women with their independence and glamorous. In the next section we shall be introduced with these magazines. 1. Mirror; at a glance: Name: Mirror Magazine Nature: Monthly Magazine Type: Fashion & Life style Established (First Issue): 2003, Dacha Editor: Quasi Changer Lam Number of publication: 24,000 (2013) Language: English Company: Mirror Group (Bangladesh) 1. 3 Instill; at a glance Name: Instill Established (First Issue): June, 1994 Editor: Ariel Fox Number of publication: (2011) Company: Time Inc. (US) EPIC Media (I-J) part: TWO 2. 1 PURPOSE STATEMENT This paper has been intended as an academic purpose of the students of M. A. In English Program.It aims to find out a comparative analysis of both the magazines in literal as well as structural sense. This comparison will reveal both the similarities and dissimilarities between the two magazines each possess supreme popularity in their own platform. The other purpose of the study is to analyze the style of language of English and what techniques are used in the magazines. This paper also tries to find out how to use language in print media 2. 2 Methodology For a constructive comparison time frame and contextual frame should be pretty much same and identical.Here two magazines have been selected with same nature and categorical similarities. In order to maintain the time frame, the particular number of the magazines for analysis was kept concurrent. The Bangladesh magazine ââ¬Å"Mirrorâ⬠was taken of volume 10, which is the July-August Edition of the rent year and an Did Fashion Special. On the other hand, the I-J based international Magazine ââ¬Å"Instillâ⬠was taken of Volume 20, number 5 and it was the edition of the month of May of this going year. Thus, from the time frame perspective, both have same platform.In order to maintain the contextual frame, the two magazines taken from the similar taste and target readers. Both are fashion and life style magazines particularly designed for the progressive modern ladies. It is important to mention that the comparison was not made from all the numbers of the magazines, rather the two given numbers mentioned earlier. In the next section, we will begin with the comparative analysis of the magazines. Part: THREE Comparative discussions on the two magazines The previously mentioned numbers of each magazine were brought under the observation of the readers.We have tried to point out similarities and dissimilarities found in their writing styles, literal values and presentations. 3. 1 Point of Similarities: 3. 1. 1 Presentation of the C over Page: Both the magazines feature their cover page with the photos of two very beautiful and glamorous celebrities. The one at the left is the cover page of the Bangladesh gagging ââ¬Å"Mirrorâ⬠which features Biddy Sinai Mim, a very promising and one of the top models of current times of the country. On the right top, we have the cover page of the British tabloid ââ¬Å"Instillâ⬠which features the global celebrity Emily Blunt, a very popular international actress.This similarity is quite an evident and a very common method for the fashion magazines to feature a photo of a beautiful looking celebrity with her distinguishes appeals and glamour. This similarity is not true for these two numbers of the magazines, bull almost all numbers of all fashion magazines. 3. 1. Domination of Photos of the models at pose: This is perhaps the most significant similarity and feature of the fashion magazines. They use the photos more than words. In fact, in the two numbers of the mag azines, almost 80 percent of the pages contain photo of the glamorous models at their beauty pose.Thus, the language of fashion magazines are predominately visual and not word oriented. This has been found in both the magazines case. 3. 1. 3 Presentation of Commercial Advertisements Both the magazines preach quite a heavy volume of advertisements. The advertisements are found to be similar in nature. The advertisements are mostly of the beauty products and colorful photos are used in form of commercial advertisements. This reveals that both the fashion magazines use their commercials as like their features as the magazines features models and their beauty styles.Thus the advertisements seem like the magazines own features. 3. 1. 4 Similar presentation of articles: Both the magazines publish few articles in their magazines apart from the photos. The articles are mostly short, generally contains less than 250 words. The British tabloid of May, 2013 featured few articles regarding Osca r programs and activities of he international celebrities. The local tabloid featured with beauty instructions and tips and promotes latest fashions through their articles. In each case, the language is short, easily understandable and free from literal complicity. . 1. 5 Similarity in Language and writing style: Due to the light nature, both the magazines follow short and simple writing styles. They use simple worlds, short speeches and the articles are mostly free from articulate and literal beauty. 3. 2 Point of Dissimilarity: 3. 2. 1 Contextual Dissimilarity: Despite of their similar nature of fashion and life style, the magazines differ in their approach too. ââ¬Å"Instillâ⬠exhibits its high interest in the life style of the celebrities whereas ââ¬Å"Mirrorâ⬠focuses more on the fashions of the progressive ladies.The photos and the features of the magazine ââ¬Å"Instillâ⬠uses the international celebrities to preach the activities of the celebrities. Mirror- the Bangladesh Fashion tabloid on the other hand, focuses more on the fashion and glamour of the local celebrities. 3. 2. 2 Difference in the theme: it has seen that the local fashion magazine focuses on the impact of culture and seasons. For instance, the selected edition was an Did special. There were previous editions on summer bride, pupas special, bookish special etc. This suggest that the local magazine focuses on the cultural impact in the world of fashion.The international tabloid focuses on the life of the celebrities, their activities are the elements of interest. The impact of culture and season was not found to be strong. 3. 2. 3 Difference in Approach: The British magazine provides short article and information though small news in columns which has been completely missed out in the beggarliness magazine. Bangladesh magazine on the other side focuses on the physical beauty of their local liberties (mostly models) and the pattern of their latest fashions thought the exhi bition of a series of photos.Part Four Findings of the language of Fashion Magazine: The noticeable findings of the language of fashion magazines are It shows how linguistic techniques such as puns and presuppositions are used by magazines to capture our attention It examines how image and text combine to produce meaning It discusses how ideological messages are conveyed It analyses how the appeals are constructed through language It looks at how magazines relate to culture part FIVE Conclusion The language of fashion magazines is lively.Furs are to-die-for', colors are ââ¬Ëdrifts dreamy and looks are ââ¬Ëleotard simple. The last three decades have witnessed a reevaluation of fashion, both in terms of its credibility as an area of academic investigation and its importance in Western culture, which has caused its reconsideration within popular culture. Today, fashion can be found when flipping through art and fashion magazines. The art press, however, locates fashion within wid er social and cultural dialogues, reflecting upon the social, cultural, psychological ND economic implications of dress.As women's fashion magazines have critical role in the maintenance of cultural values and representation of the gender identity, we will be able to investigate how English language relates to gender identity through fashion in Bangladesh. Even though synergies effect of fashion and language as symbolic capital is very interesting subject to study. This habitation of two is neutralized as to create mythology of the modern society is hard to deconstruct. To demythologize the fusion of English language and fashion more profound research will be needed.
Saturday, January 11, 2020
Pirates of the Caribbean Essay
There dynamic personalities of the many characters in Pirates of the Caribbean are a huge part of what made the movie so successful. Among those characters, there are some who contribute more to the plot by their actions and some who affect the other characters by their mere presence. Captain Barbosa and the Commodore have some obvious differences that divide them in the movie, but their similarities are much more important. As a pair of comic alazons, Barbosa and the Commodore play an important role in providing basis for comparison against Captain Jack Sparrow and further complicate the love story in the movie. Captain Barbosa is interesting character in that his actions are often represented in an amateur light. It is important remember the introduction of Barbosa if one is to understand his character. It is important to note that he is originally Jack Sparrowââ¬â¢s first mate, which immediately relegates Barbosa to a subordinate and thus, amateur position. He never really grows out of that and through the rest of the movie and there is never much indication that he is capable, either. One such example where this is evident occurs when Barbosa makes the mistake of thinking that Elizabeth is the daughter of Bootstrap Bill Turner. By attempting this important blood ritual using the wrong person, Barbosa shows just how much of an impostor he actually is. In addition to that, one of the primary characteristics of a comic alazon is their unique ability to get in the way of the primary love scene in the movie. In this case, Barbosaââ¬â¢s constant meddling with Elizabeth, Jack, and William spurns a host of different love-filled possibilities in the film. Like Captain Barbosa, the Commodore is an interesting character who has a big role in the film. His primary role as impostor comes from his relationship with Elizabeth. He sets out to marry her and the film allows him to get very close, but ultimately she settles on Will Turner as her true love. This sets up the Commodore as something of a joke from the very beginning. In addition, he can be seen as a comic alazon because of his failed methods in finding Elizabeth when she has been captured by Barbosa. It is interesting to note that the Commodore is completely against piracy, which is something of a strange idea considering how common it was during the movieââ¬â¢s time. It was almost as if he was on a mission to stop something that he had absolutely no ability to stop. The commodore is similar to Barbosa in many ways and the movie adeptly points this out. These two are similar in that they serve as a foil for Will Turner in his relationship with Elizabeth. In addition, both are seen as something of jokes, and they are not taken seriously by the other characters even though the one thing they want more than anything is to be taken seriously. In a way, Jack Sparrow just toys with both the Commodore and with Barbosa and though he is always in reach of them, he manages to make them look foolish and escape at the same time. This is the one reason why they are important to the plot. The basic characteristics of the two characters make them very different simply based upon the fact that Barbosa is a pirate who is hurting Elizabeth, while the Commodore is against piracy and loves Barbosa. Those things are purely superfluous to the story, though, as the more important theme has to be drawn both charactersââ¬â¢ abilities to look foolish and completely inept at the same time. All in all, these characters are incredibly important to the storyââ¬â¢s development. Though their differences are pronounced, their similarities are even more important. On both sides of the spectrum, they serve as something to laugh at and people for the main characters to constantly toy with for the entirety of the film.
Friday, January 3, 2020
Epic Hero In Beowulf - 885 Words
A character that conquers evil, exemplifies bravery and is personified as a cultural legend can be considered an epic hero. An epic hero is someone who is noble and brave and accomplishes heroic acts that define their legacy while suffering an internal conflict. An embodiment of an ideal epic hero is Beowulf from the epic Beowulf who sets an unmatched example as an epic hero due to the fact that he displays a great deal of bravery, overcomes evil, and stands as a cultural legend while fighting with internal conflict. Beowulfââ¬â¢s journey as an epic hero involves killing demons and their moms along with protecting his kingdom by fighting a fire breathing poisonous dragon. Most epic heroes have an internal struggle that comes up throughoutâ⬠¦show more contentâ⬠¦The killing of Grendel is very significant especially in regards to Beowulfââ¬â¢s legacy as a warrior due to the fact that before Beowulf no one was brave enough to stop Grendel, as a result of Beowulfs bravery he was awarded many treasures by King Hrothgar. All is good and well in the land of Danes until Grendelââ¬â¢s mother decides she wants to avenge her son by terrorizing the mead hall. As a result, Grendelââ¬â¢s mother ends up killing more citizens but fled upon seeing warriors. Beowulf finds Grendelââ¬â¢s mother in an underwater cave and battles her until he finally defeats her and arose victoriously. After Beowulf establishes his presence as a brave young warrior he returns home and after a series of events becomes the King of the Geats. Beowulf reigned as King for fifty years as he bravely protected his kingdom from invaders and ensured safety to his citizens. In Beowulfââ¬â¢s 50th year as King, his last brave act is his face off with an angry dragon that terrorizes his kingdom. As he fights the Dragon with his right-hand man Wiglaf, Beowulf ââ¬Å"rallies to use his knife and is able to cut into the monsters entrails, killing him. Realizing he is dying, Beowulf speaks h is final words as Wiglaf attempts to comfort him. which means that Beowulf manages to kill the Dragon even at his old age but also dies in the end. The killing of Grendel, Grendelââ¬â¢s mother, and the Dragon prove thatShow MoreRelatedThe Epic Of Beowulf As An Epic Hero1519 Words à |à 7 Pagesaway following a journey, you have most likely read an epic. An epic by definition is ââ¬Å"a long poem, typically one derived from ancient oral tradition, narrating the deeds and adventures of heroic or legendary figures or the history of a nationâ⬠. Every epic has a main character that undergoes the same archetypal journey as all other heroes, an epic hero. There are specific qualities one must have to be considered an epic hero. Each epic hero possesses superhuman strength, displays a strong sense ofRead MoreThe Epic Of Beowulf As An Epic Hero711 Words à |à 3 Pagesthan the writer. These ââ¬Å"epic herosâ⬠are protagonists that fulfill their potential of greatness throug h using their bravery, strength and humility for good. The near ancient tale of Beowulf is a classic example of an epic story that contains an epic hero. In this tale Hrothgar, the king of the Danes, has been terrorized by a beast known as Grendel. This beast has been murdering the kingââ¬â¢s people and no one has come close to stopping this killer. A Geat warrior named Beowulf hears of the Kingââ¬â¢s predicamentRead MoreBeowulf : An Epic Hero930 Words à |à 4 Pages The story of Beowulf shows its reader many characteristics of why this Anglo-Saxon poem is an epic. First of all, Beowulf is a warrior of epic renown by the time he formally introduces himself in the poem. Next, Beowulf is the warrior that many strive to be in life. In addition, Beowulf finds himself tackling many quests that involve dangerous beasts, or as he might call them, demons. The next quality shown by Beowulf is his bravery and honor. The reader is able to easily identify this characteristicRead MoreBeowulf, The Epic Hero1373 Words à |à 6 Pages 2015 Beowulf, The Epic Hero In Anglo Saxon times, Beowulf is considered a well known epic hero. ââ¬Å"Epic heroes are literary characters from ancient mythology and other stories, which were written down in the form of long, narrative epic poems. The hero is the main character, or protagonist of the poemâ⬠(Epic Hero: Definition, Characteristics Examples.). The epic hero usually battles for accomplishments to a set of tasks to complete important goals. Beowulf is described as an epic hero becauseRead MoreThe Epic Hero Of Beowulf866 Words à |à 4 PagesAn epic hero is someone who is of great importance, they have supernatural abilities, have some form of connection with the Gods, and accomplish great deeds. In Beowulf, translated by Seamus Heaney, Beowulf is the epic hero in his tale and he is considered great by those who know of his life. There are two versions of his story which portrays him in a certain way. The video version does not do its best to portray him as an epic hero but instead show that he is a liar, a womanizer, and a coward. TheRead MoreBeowulf : An Epic Hero894 Words à |à 4 Pages The character of Beowulf demonstrates several characteristics that make a great epic hero. Throughout his lifetime he displayed several characteristics such as honor, bravery, physical superiority, leadership, and glory. These characteristics all formed how the Anglo-Saxons believed one should live their life. Along with the valorous deeds that Beowulf accomplished he is considered to be a prime example of an epic hero. Beowulf would have even been considered a model human to the Anglo-SaxonsRead MoreBeowulf : An Epic Hero978 Words à |à 4 Pages Beowulf is a character that exudes the qualities of an epic hero. Throughout this epic, Beowulf is seen as a hero to many and a major threat to the evils he encounters. The values of the Anglo-Saxons, who would have read and admired this poem, included loyalty, bravery, and honor. Beowulfââ¬â¢s character exemplifies all of these qualities to the highest degree. The values and traditions of the original composers of this story cause Beowulfââ¬â¢s character to be the perfect example of an Anglo-SaxonRead MoreBeowulf: an Epic Hero983 Words à |à 4 PagesGauvain British Literature Beowulf Essay 9/22/04 Beowulf: An Epic Hero According to Abrams, the heroic poem is a long verse narrative on a serious subject, told in an elevated style, and centered on a heroic or quasi-divine figure on whose actions depends the fate of a tribe, a nation, or the human race. Beowulf fits Abrams description of an epic, exhibiting all of the characteristics listed throughout the book, thus defining Beowulf as a hero and making the book an epic through its elevatedRead MoreBeowulf, the Epic Hero1431 Words à |à 6 PagesBeowulf, the Epic Hero There have been many grand stories about great warriors, and champions; those about epic heroes however, are the truly exceptional tales. One such tale, over a thousand years old, stands out from all the rest: Beowulf, the tale of a great warrior, on his quest to achieve eternal glory, defeating great opponents. Throughout the whole story, Beowulf demonstrates most ââ¬âif not all- of the qualities that an archetypal hero possesses. He embodies the highest ideals of his cultureRead MoreBeowulf : The Epic Hero960 Words à |à 4 PagesPotter, and Beowulf all have in common? They all demonstrate the qualities of epic heroes. Beowulf represents several characteristics of an epic hero and demonstrates the values of the Anglo-Saxons. He is the main character of his story, he has a main goal, he travels and fights with a group of people, and he accomplishes many valorous deeds; the values of the Anglo-Saxons are also shown through the actions of Beowulf, such as courage, loyalty, an d fame. For example, when Beowulf heard a cry
Subscribe to:
Posts (Atom)